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Facilitated model for glasses

Michael Schulz and Steffen Trimper
Fachbereich Physik, Martin-Luther-Universita¨t, D-06099 Halle, Germany
~Received 16 July 1997; revised manuscript received 10 December 1997!

An analytical approach to the spin facilitated kinetic Ising model@Phys. Rev. Lett.53, 1244~1984!; J. Chem.
Phys.84, 5822~1985!# is proposed using a Fock space representation of the master equation. The cooperativity
inherent in glassy materials is included by dynamical restrictions, which allows a change of local regions with
different mobilities depending on the neighboring configurations. Applying a dynamical mean-field approxi-
mation, we get a non-Arrhenius relaxation behavior in the case of a simple activation dynamics for the kinetic
coefficients. Whereas the short-time behavior is dominated by the conventional kinetic Ising model, the long-
time limit is determined by the restrictions. Including an additional static interaction strength favoring a
solidlike state, the relaxation time becomes drastically enlarged due to the partial freezing of the system.
Related to this phenomenon the nucleation rate is strongly decreased, preventing the nucleation of droplets of
the condensed phase. Analyzing the influence of spatial fluctuations, the perimeter of regions with extremely
low mobility can be estimated in the long-time limit, resulting in a logarithmic behavior.
@S1063-651X~98!00906-4#

PACS number~s!: 05.40.1j, 05.50.1q, 82.20.Mj
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I. INTRODUCTION

Although the liquid-glass transition is studied with diffe
ent methods, it remains one of the unsolved challeng
problem in the theory of phase transitions@1,2#. A large
number of glass-forming liquids offer a very pronounced
laxation dynamics when they are cooled fast enough fro
high-temperature liquid state to a low-temperature state.
relaxation patterns are nonexponential in time and dep
strongly on temperature. The slow dynamics is also a fea
of conventional phase transitions@3#; however, frozen liq-
uids do not evolve into an observable long-range correla
or ordered state that is persistent in time.

The liquid-glass transition is dynamic in origin and cha
acterized inevitably by a high cooperativity of local pr
cesses@4#. To illustrate the behavior let us divide the syste
into small cells, say, on the nanometer scale, which are c
acterized by different local mobilities. Assuming that the d
namics is based on hopping processes, there is a cooper
rearrangement of certain cells in order to change more
mobile cells into more mobile ones and vice versa. The
operativity originates from the observation that a given c
embedded in an environment of cells of different mobiliti
can be trapped by its neighbors. Therefore, a change
state depends strongly on the processes in the neighborh
Obviously, the cooperativity increases for decreasing te
peratures@5#, leading to a non-Arrhenius behavior in the pl
of the characteristic relaxation timet r of the glass transition
and the inverse temperatureT21 in the low-temperature re
gime Tg,T,Ts , whereTg is the glass transition tempera
ture @6,7#. Although a fit of this curved trajectory is per
formed by a Williams-Landel-Ferry curve@8# with a finite
Vogel temperature, the experimental data are also com
ible with a zero Vogel temperature@9#. So a better theoretica
understanding of the phenomena is highly desirable.

A great effort in an analytical analysis is based on
mode-coupling theory elaborated in several papers@1,10–
14#. As a main result of that approach the authors find
571063-651X/98/57~6!/6398~7!/$15.00
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critical temperatureTc above the glass temperatureTg . It
can be interpreted as a precursor of the glass transition@15#.
At Tc the system exhibits a crossover between a liquidl
~mobile! and an immobile solidlike behavior. The abov
mentioned cooperativity is included only indirectly. The m
tivation of the present paper is to understand in an analyt
manner the influence of cooperativity and the local rest
tions. To this aim we use the Fredrickson-Andersen mo
~FAM! @16,17#; compare also Refs.@18# and@19#. The FAM
is of Ising type, however, with kinetic confinements orig
nated from the mentioned restrictions. The two orientatio
of the spin are related to the particle density of lattice ce
where the spin-down state represents a low density~a high
mobility, liquidlike region! and the spin-up state correspon
to a high density~a low mobility, solidlike region!, respec-
tively. Neglecting diffusive motion, which should be releva
in the glass phase, we assume that the dynamics is base
hopping processes between states of different mobilit
However, the topological restrictions are taken into acco
explicitly, resulting in the above-mentioned cooperativit
Local spin-flip processes are allowed only if the number
neighboring cells in the spin-up state is smaller than or eq
to a certain numberf ~the f -facilitated FAM!.

It should be remarked that a real liquid cannot be map
completely onto an Ising model. Nevertheless, the FAM
flects the main features of glassy systems. For instance
FAM yields a Kohlrausch-Williams-Watts behavior for th
decay of the autocorrelation function@20#. Furthermore, it
reveals a typical non-Arrhenius behavior of the relaxat
time @21# that can be approximately fitted by lnt}A1BT22.
Obviously, the FAM does not offer ab process that should
be interpreted as an indication that the underlying ma
equation is valid on a time scale larger than the time scal
the fastb process. However, the observation of a stretch
exponential decay of the autocorrelation function as well
the non-Arrhenius behavior points out that the FAM shou
be considered as a reasonable approach to describe the
a process of supercooled liquids well below the critical te
6398 © 1998 The American Physical Society



r
v

lly
in

th

e
is
r
n
a

es
y
le
r a
de

ha

is
w

er

io
b
e
th
to

rm

at
oc

se
as
io

rs
lat-

the

y
r-

ua-
the
uc-
f
nge
on
ne
os-

,

te
r-
in-
eri-
a
ount
ole
of
rom
per-
sen

57 6399FACILITATED MODEL FOR GLASSES
peratureTc of the usual mode-coupling theory@1,10–13#.
Moreover, the FAM can be extended in a straightforwa
manner including other degrees of freedom, for instance,
cancies@21,19#.

Up to now the FAM had been studied numerica
@20,17,21#. The results confirm the relevance of the model
describing real glasses. In particular, the FAM reflects
essential properties of supercooled liquids.

Recently, we solved the one-dimensional FAM@22#,
which does not show a phase transition but a significant
larged relaxation time. The aim of the present paper cons
in an analytical approach for an intermediate-temperature
gime and for higher dimensions. Let us stress that we do
analyze the behavior in the vicinity of a possible critic
temperature.

Within our analytical calculations the steric hindranc
are automatically included by mapping the underlying d
namics satisfying a master equation onto a quantum prob
in terms of Pauli operators. They allow only an empty o
single occupied state at a certain lattice cell. The basic i
of our approach is comparable to the one due to Ja¨ckle and
Krönig @23# applied in computer simulations.

II. ANALYTICAL FORMULATION OF THE FAM

As proposed above, the system is divided into cells t
are characterized by the orientation of the spin

Si5122ni . ~1!

If the lattice celli is occupied by mobile particles, the state
assign toni51, whereas in the case of an immobile state
set ni50. A certain configuration is characterized bynW
5(n1 ,n2 . . . ). The dynamics is introduced via the mast
equation written in the symbolic form

] tP~nW ,t !5L8P~nW ,t !. ~2!

HereP is the probability that the configurationnW is realized
at timet. The evolution operatorL8 will be specified below.

Furthermore, let us introduce annihilation and creat
operators to formulate a state in terms of occupation num
operators where in the present paper those operators hav
eigenvalues 0 and 1. Thus the problem is to formulate
dynamics in such a way that this restriction is taken in
account@24–32#; for a recent review see Ref.@33#. The situ-
ation in mind can be analyzed in a seemingly compact fo
using master equation@34,35,28# introduced above@Eq. ~2!#.
Following Refs.@34–36,28,31#, the probability distribution
P(nW ,t) is related to a state vectoruF(t)& in Fock space ac-
cording toP(nW ,t)5^nW uF(t)&, with the basis vectorunW & com-
posed of second quantized operators. The master equ
~2! can be transformed to an equivalent equation in F
space

] tuF~ t !&5L̂uF~ t !&. ~3!

The operatorL8 in Eq. ~2! is mapped onto the operatorL̂. Up
to now the procedure is independent of the operators u
Originally, the method had been applied for the Bose c
@34–36#. Recently, an extension to restricted occupat
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numbers ~two discrete orientations! was proposed
@24,25,28–31# introducing Pauli operators. These operato
commute at different cells and anticommute at the same
tice cell. A further extension to ap-fold occupation number
is possible@37#.

The relation between the quantumlike formalism and
probability approach is given by

uF~ t !&5(
ni

P~nW ,t !unW &. ~4!

As it was shown by Doi@34#, the average of an arbitrar
physical quantityB(nW ) is defined by the average of the co
responding operatorB̂(t),

^B̂~ t !&5(
ni

P~nW ,t !B~nW !5^suB̂uF~ t !&, ~5!

with the state function̂ su5(^nW u. Using the relation̂ suL̂
50, the evolution equation for an operatorÂ can be written

] t^Â&5^su@Â,L̂#uF~ t !&. ~6!

It seems necessary to note that all the dynamical eq
tions covering the classical problem are determined by
commutation rules of the underlying operators and the str
ture of the evolution operatorL̂. In our case the dynamics o
the model is given by spin-flip processes indicating a cha
of the local mobilities and densities, respectively. In additi
to conventional thermodynamically controlled flip rates, o
has to consider the topological restriction that a flip is p
sible only if the following condition is satisfied:

1

2(j ~ i !
~11Sj !< f , ~7!

where j ( i ) means all neighbors of lattice celli and f is the
restriction number~the f -spin-facilitated kinetic Ising model
the FAM!. Thus a flipSi521
Si511 is allowed only if
the number of neighboring cells in the low-mobility sta
does not exceedf . Note that this topological restriction gua
antees the highly cooperative dynamics of the FAM, the
fluence of which had been already demonstrated by num
cal simulations@17,21#. We should stress that the FAM is
model on a mesoscopic scale that does not take into acc
detailed atomic motion. The occupation numbers play a r
of block variables as the block spin in a scaling theory
phase transitions. So we conclude that the crossover f
shear diffusion to shear waves also characteristic of su
cooling cannot be expected within the Fredrickson-Ander
model.

The evolution operator for a simple flip process reads@38#

Li5l~di
†2didi

†!1g~di2di
†di !, ~8!

wherel andg are flip rates. The operatorsdi anddi
† fulfill

the commutation rule of Pauli operators

@di ,dj
†#25d i j ~122di

†di !. ~9!
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6400 57MICHAEL SCHULZ AND STEFFEN TRIMPER
The occupation number operatorni5di
†di is related to the

spin due to Eq.~1!.
Using Eq. ~6!, the average occupation number opera

obeys

] t^ni&5l^12ni&2g^ni&. ~10!

The confinement manifested by Eq.~7! can be exactly taken
into account by assuming flip rates that depend on the c
figuration of the local environment of a given cell; compa
Eq. ~11!. Here we consider thef -facilitated FAM with an
arbitrary number f , which is the reasonable case
f -dimensional networks; see also Ref.@22#.

To include the local restrictions~7! we replace l
→lnj 1

¯nj f
andg→gnj 1

¯nj f
. Hence the evolution opera

tor reads

L̂5 (
i , j 1¯ j f

x i j 1¯ j f
@l~di

†2didi
†!1g~di2di

†di !#nj 1
¯nj f

,

~11!

where x i j 1¯ j f
is nonzero when the lattice indicesi , j 1¯ j f

belong to plaquettes of nearest neighbors. A flip proces
the cell i is allowed whenever the neighboring cells are o
cupied, i.e., such a flip process is favored in the case
liquidlike neighborhood.

Further analysis can be performed for an arbitrary num
f . In the case of a simple cubic lattice we setf 5d5 z/2,
where d is the spatial dimension andz is the number of
nearest neighbors.

Moreover, the method can be extended by including
mutual interaction between different cells and by consider
finite temperatures. To this aim we have to replace the e
lution operator by@38,39#

L̂5n( x i j 1¯ j f
@~12di !exp~2bH/2!di

†exp~bH/2!#

1@~12di
†!exp~2bH/2!diexp~bH/2!#nj 1

¯nj f
.

~12!

Here n is a new hopping rate,b5T21 is the inverse tem-
perature of the heat bath, andH is the Hamiltonian describ
ing the static interaction between different cells that giv
rise to a nonlocal dynamics different from Eq.~8!. We as-
sume that

H52h(
i

Si2
1

2(̂i j &
Ji j SiSj . ~13!

Using Eq. ~1!, the Hamiltonian can be rewritten~up to an
unimportant constant! as

H52(
i

~h1Jz!ni22J(
^ i , j &

ninj ~14!

This Hamiltonian contains both the energetic level of ea
cell and the mutual interaction between adjacent region
different energy and mobility. It should be remarked that
original FAM corresponds to a Hamiltonian withJ50 (h
plays the role of an activation energy!. The Hamiltonian de-
r
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termines only the energetic levels of the actual states, i.e
is responsible for the thermodynamic transition rates.
though we are aware that a real liquid cannot be map
completely onto such an Ising-type Hamiltonian, the FAM
well established and it seems to be a reasonable mode
describe supercooled liquids.

The Hamiltonian~14! completes the mapping of a rea
liquid onto an Ising model in comparison with the origin
FAM. In the case of a nonzero couplingJ a solid-solid in-
teraction is favored whenever the relationsh.0 andh2Jz
.0 are fulfilled. This result follows by replacing the oper
tor n by m512n. With the help of the algebraic propertie
of Pauli operators we get

exp~2bH/2!di
†exp~bH/2!

5di
†expFbS h1Jz22(

l ~ i !
Jil nl D G , ~15!

wherel ( i ) means summation over all neighbors of celli .

III. MEAN-FIELD APPROACH

Using Eqs.~12! and~15! we are able, as before@compare
Eq. ~10!#, to derive an exact evolution equation for the ave
age particle number operator@Eq. ~6!#. A whole hierarchy of
equations results. In the simplest approximation we decou
the equation within the mean-field approach. To be spec
we replace the Hamiltonian~13! by its mean-field expression

Hm[(
i

h̃ni ,

with

h̃52h12Jẑ S&, ^S&5122^n&. ~16!

The decoupling procedure is performed in the spirit of t
coarsening of the free energy such as in the conventio
Ising model. Whereas the exact equation for the avera
density is valid on a microscopic scale, say, of the size
cells l , the equation resulting after decoupling and the s
sequent continuum limit should describe the system o
scalex@ l . However, the main feature of the model, the i
clusion of hard-core dynamics at the same lattice site m
fested in the anticommutation relations, is taken into
count. As in the continuum Ising model, the correlations
included in spatially varying terms, the influence of which
discussed later. The evolution equation for the averaged d
sity ^ni(t)& can be obtained in the same manner as Eq.~10!.
However, the corresponding equation is based on the m
fied evolution operator~12!, which gives rise to an additiona
factor proportional to@^ni(t)&# f . Furthermore, Eq.~15! is
taken into account, leading to exponential terms.

Performing the continuum limit for̂ni(t)&5n(xW ,t) ~for
simplicity we setl 51), we find

] tn5gnf@exp~2bh̃/2!~12n!2n exp~bh̃/2!n#, ~17!

whereh̃ is defined in Eq.~16!. The steady state yields
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57 6401FACILITATED MODEL FOR GLASSES
n05
1

exp~bh̃!11
. ~18!

The relaxation time can be calculated by making an ans
n(t)5n01n1(t), which leads to

] tn1~ t !5t21n1~ t !,

with

t5
1

2gn0
f $cosh~bh̃0/2!22~T!/T! n0exp~bh̃0/2!%

,

~19!

where h̃052@h1T!(122n0)# is introduced@see Eq.~16!#
with the characteristic temperatureT!5Jz discussed in Sec
III B.

Performing the stability analysis for the kinetic Isin
model without restrictions, we find thatt @Eq. ~19!# can be
put in the final form

t

t0

5t Isn0
2 f ,

with

t Is5
1

2@cosh~bh̃0/2!22~T!/T! n0exp~bh̃0/2!#
. ~20!

Heret0 stands for a microscopic time scale expressed by
inverse hopping raten and the coordination number. Equa
tion ~20! has a simple interpretation. Due to the kinetic r
strictions introduced before, the relaxation time of the FA
is given by the corresponding relaxation time of the conve
tional kinetic Ising model scaled with a factorn0

f , the con-
sequences of which will be discussed in the following.

A. Activation dynamics

As in the numerical simulation~see Refs.@17#,@21#!, we
discuss first a pure activation dynamics characterized by
glecting the static coupling between different cells. In o
notation we setJ50. Physically this means that a change
the mobility ~spin-flip process! is possible with a probability
proportional to exp(6bh) according to Eq.~15!. The energy
h is nothing but the difference between the liquidlike and t
solidlike state per particle.

The relaxation time is given by

lnS t

t0
D 5bh1~ f 21!ln@11exp~bh!#. ~21!

From here we conclude a different behavior for low and hi
temperatures:

lnS t

t0
D .~ f 21!ln 21

b f h

2
for bh!1,

~22!
tz

e

-

-

e-
r
f

e

h

lnS t

t0
D .

b~2 f 21!h

2
for bh@1.

Asymptotically two Arrhenius trajectories appear. Howev
the low-temperature branch offers a slowing down compa
to the high-temperature region manifested in a smaller slo
The crossover between both curves is roughly estimate
be (bh)CO52 ln2.

The behavior of the relaxation time can be more p
nounced for the functionF(t) introduced in Ref.@40#

F~T!5H 2
d ln~t/t0!

dT
J 21/2

.

As a result, we find for our model

F~T!5TA2/hF11
2~ f 21!

11exp~2bh!G
21/2

. ~23!

As mentioned above, the high- and low-temperature regim
are different:

F~T!.A2/h
T

Af
for bh!1,

~24!

F~T!.A2/h
T

A2 f 21
for bh@1.

B. Influence of interaction

The inclusion of a mutual interaction between regions
different mobility leads, in the mean-field approximatio
~15!, to a temperature- and state-dependent activation en
h̃52(h1T!^S&), where^S& obeys the self-consistent equ
tion

^S&5tanhS h

T
1

T!^S&

T
D . ~25!

The characteristic temperatureT!5Jz does not signal a
second-order phase transition because the activation en
has to be a nonzero parameter.

First, let us discuss the low-temperature limitT→0. Here
we find that ^S&0.122exp@22(h/kBT) 22(T!/T)#. The re-
laxation time tends to infinity forT→0, according to

t

t0

.expS ~2d21!
h̃0

2kBT
D ,

with

h̃052H h1T!F122 expS 22
h

T
22

T!

T
D G J . ~26!

In the case of vanishing activation energyh the relaxation
time would greatly increase, approachingT!, indicating a
second-order phase transition. Because the activation en
is always nonzero, the increase oft is finite due to the finite
strength ofh. Furthermore, different from the convention
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6402 57MICHAEL SCHULZ AND STEFFEN TRIMPER
Ising model where the relaxation time decreases belowT!,
the kinetic restriction prevents such a decay. The reaso
the result revealed in Eq.~20!, which relates the relaxation
time of the FAM to that of the usual Ising model. Due to t
factor nf in the denominator of Eq.~20!, which becomes
smaller for low temperatures (n0→0 for T→0), the relax-
ation time increases drastically, characterizing the par
freezing of the mobility.

We remark that for a small activation energyh,hc and
T,T! there exist three solutions of the self-consistent eq
tion ~25! where the critical activation energy is given by

hc5
2T2

3~T!!3
~T!2T!2/3.

It is easy to see that in the case ofh.0 considered here, only
the solution with positivêS&0 is relevant.

IV. NUCLEATION PROCESS

As a further consequence of the inclusion of the inter
tion manifested in Eq.~19! let us discuss the nucleation pro
cess. When a glass former is cooled down the formation
droplets of the solid phase is prevented. We would like
demonstrate within our formalism that the nucleation rad
of droplets remains finite at low temperatures.

Due to the kinetic restrictions manifested in sta
dependent kinetic coefficients@see Eq.~12!# and the inclu-
sion of the mutual interaction between particles situated
nearest-neighbor sites, a change of the density is effecti
allowed via diffusion. For instance, let us assume that th
is a mobile particle within a certain region surrounded
immobile ones. Such a particles can change its position o
by hopping processes, which corresponds, in our appro
to a diffusive motion. Therefore, the diffusive transport
responsible only for a nucleation process. For that reason
adopt the conventional Lifshitz-Slyozov-Wagner~LSW!
theory@41# to describe the latest stage of the nucleation p
cess, however, with the modification due to the time sca
manifested in Eq.~20!. Because cooling is performed with
certain cooling rate, i.e., the temperature is time depend
via T(t), one obtains a diffusion coefficient that also depen
strongly on time. Thus one has to replace the combinationGt
with the diffusivity G by *0

t G(t8)dt8. One can be convinced
that the final result of the LSW theory remains essentia
unchanged by this replacement. In particular, the aver
radius of a droplet is now given by@42#

R̄5S 4p

9 E
0

t

G~ t8!dt8D 1/3

. ~27!

To estimate the behavior ofG we take into account that th
diffusion coefficient for a fixed spatial interval is propo
tional to the inverse of a characteristic time that is chosen
be the relaxation time given by Eq.~20!. Furthermore, let us
assume a constant cooling ratek. Thus we get

E G~ t8!dt8.E t~T!21
dt8

dT
dT[2

1

kET!

T0
t21~T!dT.

~28!
is
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Here the temperatureT0 is the lowest temperature for whic
the system is cooled down. In particular, we consider
limit T0→0. Using the low-temperature limit for the relax
ation time~22! results in

R̄.k21/3H EiS ~2 f 21!h

2T! D 1
2T!

~2 f 21!h

3exp[2~2 f 21!h/T!] J 1/3

, ~29!

where Ei(x) is the exponential integral. In contrast to th
conventional LSW theory, the droplet radius remains fin
Droplets of finite sizes appear and disappear. Nucleatio
strongly reduced, i.e., a sufficiently fast cooling procedu
prevents crystallization. Obviously the same kind of calcu
tion can be performed with a nonconstant cooling rate. T
main result is unchanged.

V. SPATIAL FLUCTUATIONS

Up to now we have neglected spatial fluctuations origin
ing from the static coupling strengthJ. Following the spirit
of the mean-field approach, we can include lowest-order g
dient terms by inserting Eq.~15! into Eq. ~12! and using

(
l ~ i !

Jil nl5(
r ~ i !

Jir ~nr2ni !1zJni'Jl2¹2ni1zJni .

~30!

As a result we get an evolution equation for the avera
density fieldn(xW ,t) in the form

] tn5gnf@exp~2bh̃/2!~12n!2n exp~bh̃/2!n#

1g2J/Tl2nf@exp~2bh̃/2!~12n!

1n exp~bh̃/2!n#¹2n. ~31!

To study the influence of spatial fluctuations we make
ansatz n(xW ,t)5ne(t)1m(xW ,t), where ne(t) satisfies Eq.
~17!. Inserting this ansatz in Eq.~31! and linearizing the
resulting equation with respect tom(xW ,t) we find

] tm~xW ,t !5C~ t !m~xW ,t !1D~ t !¹2m~xW ,t !, ~32!

where the coefficientsC(t) andD(t) @see Eq.~33!# are de-
termined by the pure time-dependent densityne(t) obeying
Eq. ~17!. Equation~32! is solved by

m~xW ,t !5m1~xW ,t !expS E
0

t

A~ t8!dt8D .

Here m1 obeys a diffusive equation, however, with a tim
dependent diffusivityD(t),

] tm1~xW ,t !5D~ t !¹2m1~xW ,t !,

with
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57 6403FACILITATED MODEL FOR GLASSES
D~ t !5g2Jl2/Tne
f @~12ne!exp~2h̃e/2T!1neexp~ h̃e/2T!#,

h̃e52@h1T!~122ne!#.
~33!

Further progress can be reached by analyzing the asymp
behavior in the long-time limit. Moreover, we are interest
in the solidlike region wherene!1, i.e., for low tempera-
tures. Therefore, let us expand the corresponding equa
for ne→0. In this limit we find for a cubic lattice withf
5d5z/2,

] tne.2rn0
f 11,

~34!

D~ t !.d1ne
d2d2nd11,

where the coefficients are given by

r 5n@~122T!/T!exp~2a!1exp a#,

d15
n2Jl2

T
exp~2a!,

d25
n2Jl2

T
@~122T!/T!exp~2a!2exp a#,

with

a5
h1T!

T
.

To estimate the long-time behavior let us solve Eq.~34! and
find the time-dependent diffusion coefficientD(t). The re-
sulting diffusion equation with an arbitrary time-depende
diffusivity @Eq. ~33!# can be solved analytically, leading to
characteristic dynamical length scaleL25* tD(t8)dt8. Using
Eqs.~33! and ~34!, it results in the long-time limit
.

.

tic

ns

t

L25exp~22a!
2Jl2

f T
ln~ t/t0!. ~35!

Physically, this time-dependent characteristic length scalL
is interpreted as the perimeter of solidlike regions that
self-organized by the underlying restrictions. The perime
is small in the initial time regime and increases on a log
rithmic scale in the long-time limit. Let us remark that w
are not very deep inside the glass phase. In this case
would expect a more pronounced increase related to the
strong decrease of mobility.

VI. CONCLUSIONS

The main motivation of our paper was to demonstrate
influence of a constraint to the kinetic Ising model in t
sense of a facilitated kinetic Ising model~the FAM!. Al-
though the mean-field theory is a very crude approximati
it reveals some features of a glass transition such as no s
static solution and a crossover between Arrhenius and n
Arrhenius behavior. The model seems to be an alterna
way towards an analytical approach of the dynamics of
operatively rearranging regions. Such a behavior seems t
relevant for liquids in the vicinity of a glass transition.

The mutual restrictions of moving particles leading to
freezing of the mobility are included explicitly in the mod
by a formulation of the collective stochastic dynamics
terms of Pauli operators. In doing so we were successfu
solving the mean-field equation that is still a nonlinear ev
lution equation. The approach is related to the conventio
one using the Landau theory of phase transitions. As a
ther step we want to include fluctuation effects to get a be
understanding of the glass transition. Furthermore, we c
sider the correlation function and should include defects t
yield different relaxation processes, as already demonstr
numerically@21#.
ys.
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