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Facilitated model for glasses
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An analytical approach to the spin facilitated kinetic Ising mdé&lys. Rev. Lett53, 1244(1984; J. Chem.
Phys.84, 5822(1985] is proposed using a Fock space representation of the master equation. The cooperativity
inherent in glassy materials is included by dynamical restrictions, which allows a change of local regions with
different mobilities depending on the neighboring configurations. Applying a dynamical mean-field approxi-
mation, we get a non-Arrhenius relaxation behavior in the case of a simple activation dynamics for the kinetic
coefficients. Whereas the short-time behavior is dominated by the conventional kinetic Ising model, the long-
time limit is determined by the restrictions. Including an additional static interaction strength favoring a
solidlike state, the relaxation time becomes drastically enlarged due to the partial freezing of the system.
Related to this phenomenon the nucleation rate is strongly decreased, preventing the nucleation of droplets of
the condensed phase. Analyzing the influence of spatial fluctuations, the perimeter of regions with extremely
low mobility can be estimated in the long-time limit, resulting in a logarithmic behavior.
[S1063-651X%98)00906-4

PACS numbefs): 05.40+j, 05.50:+(, 82.20.Mj

I. INTRODUCTION critical temperatureT; above the glass temperatufg. It
can be interpreted as a precursor of the glass trangitish
Although the liquid-glass transition is studied with differ- At T, the system exhibits a crossover between a liquidlike
ent methods, it remains one of the unsolved challengingmobile) and an immobile solidlike behavior. The above-
problem in the theory of phase transitiofs,2]. A large  mentioned cooperativity is included only indirectly. The mo-
number of glass-forming liquids offer a very pronounced re-tivation of the present paper is to understand in an analytical
laxation dynamics when they are cooled fast enough from aanner the influence of cooperativity and the local restric-
high-temperature liquid state to a low-temperature state. Théons. To this aim we use the Fredrickson-Andersen model
relaxation patterns are nonexponential in time and depentFAM) [16,17]; compare also Ref$18] and[19]. The FAM
strongly on temperature. The slow dynamics is also a featurts of Ising type, however, with kinetic confinements origi-
of conventional phase transitiofi8]; however, frozen lig- nated from the mentioned restrictions. The two orientations
uids do not evolve into an observable long-range correlatedf the spin are related to the particle density of lattice cells,
or ordered state that is persistent in time. where the spin-down state represents a low dersithigh
The liquid-glass transition is dynamic in origin and char- mobility, liquidlike region and the spin-up state corresponds
acterized inevitably by a high cooperativity of local pro- to a high densitya low mobility, solidlike regio, respec-
cesse$4]. To illustrate the behavior let us divide the systemtively. Neglecting diffusive motion, which should be relevant
into small cells, say, on the nanometer scale, which are chain the glass phase, we assume that the dynamics is based on
acterized by different local mobilities. Assuming that the dy-hopping processes between states of different mobilities.
namics is based on hopping processes, there is a cooperatidowever, the topological restrictions are taken into account
rearrangement of certain cells in order to change more imexplicitly, resulting in the above-mentioned cooperativity:
mobile cells into more mobile ones and vice versa. The cobtocal spin-flip processes are allowed only if the number of
operativity originates from the observation that a given cellneighboring cells in the spin-up state is smaller than or equal
embedded in an environment of cells of different mobilitiesto a certain numbef (the f-facilitated FAM).
can be trapped by its neighbors. Therefore, a change of a It should be remarked that a real liquid cannot be mapped
state depends strongly on the processes in the neighborhoathmpletely onto an Ising model. Nevertheless, the FAM re-
Obviously, the cooperativity increases for decreasing temflects the main features of glassy systems. For instance, the
perature$5], leading to a non-Arrhenius behavior in the plot FAM yields a Kohlrausch-Williams-Watts behavior for the
of the characteristic relaxation time of the glass transition decay of the autocorrelation functig20]. Furthermore, it
and the inverse temperatufe ! in the low-temperature re- reveals a typical non-Arrhenius behavior of the relaxation
gime T,<T<Ts, whereT, is the glass transition tempera- time [21] that can be approximately fitted by#rA+ BT 2
ture [6,7]. Although a fit of this curved trajectory is per- Obviously, the FAM does not offer & process that should
formed by a Williams-Landel-Ferry curvg8] with a finite  be interpreted as an indication that the underlying master
Vogel temperature, the experimental data are also compagquation is valid on a time scale larger than the time scale of
ible with a zero Vogel temperatuf6]. So a better theoretical the fastB process. However, the observation of a stretched

understanding of the phenomena is highly desirable. exponential decay of the autocorrelation function as well as
A great effort in an analytical analysis is based on thethe non-Arrhenius behavior points out that the FAM should
mode-coupling theory elaborated in several pagérd0— be considered as a reasonable approach to describe the slow

14]. As a main result of that approach the authors find ax process of supercooled liquids well below the critical tem-
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peratureT, of the usual mode-coupling theofy,10-13. numbers (two discrete orientations was proposed
Moreover, the FAM can be extended in a straightforward 24,25,28—3] introducing Pauli operators. These operators
manner including other degrees of freedom, for instance, vacommute at different cells and anticommute at the same lat-
cancieg21,19. tice cell. A further extension to p-fold occupation number
Up to now the FAM had been studied numerically is possibleg37].
[20,17,2]. The results confirm the relevance of the model in  The relation between the quantumlike formalism and the
describing real glasses. In particular, the FAM reflects therobability approach is given by
essential properties of supercooled liquids.
Recently, we solved the one-dimensional FAMZ], -
which does not show a phase transition but a significant en- |F(t)>:; P(n,0)[n). (4)
larged relaxation time. The aim of the present paper consists '

in an analytical approach for an intermediate-temperature resg it was shown by Do{34], the average of an arbitrary

gime and for higher dimensions. Let us stress that we do nat, . . > ) s
analyze the behavior in the vicinity of a possible critical physical quantityB(n) is defined by the average of the cor

temperature. responding operatds(t),

Within our analytical calculations the steric hindrances
are gutomatmglly included by mapping the underlying dy- (B(t))=2 P(ﬁ,t)B(ﬁ)=<s|I§|F(t)>, (5)
namics satisfying a master equation onto a quantum problem n

in terms of Pauli operators. They allow only an empty or a

single occupied state at a certain lattice cell. The basic ide@ith the state functior(5|:§<ﬁ|_ Using the reIation(slI:

of our approach_ IS gomparable to the one due tklzaand =0, the evolution equation for an operaf@rcan be written
Kronig [23] applied in computer simulations.

a(A)y=(s|[A,L]|F(t)). 6
Il. ANALYTICAL FORMULATION OF THE FAM (A =(SIALIIFD) ©

As proposed above, the system is divided into cells that !t seems necessary to note that all the dynamical equa-

are characterized by the orientation of the spin tions covering the classical problem are determined by the
commutation rules of the underlying operators and the struc-
S=1-2n;. (1) ture of the evolution operatdr. In our case the dynamics of

) o ) _ ) ~ the model is given by spin-flip processes indicating a change
I the lattice celli is occupied by mobile particles, the state is of the local mobilities and densities, respectively. In addition
assign ton;=1, whereas in the case of an immobile state weg conventional thermodynamically controlled flip rates, one
set n;=0. A certain configuration is characterized oy has to consider the topological restriction that a flip is pos-
=(n¢,n,...). Thedynamics is introduced via the master sible only if the following condition is satisfied:
equation written in the symbolic form

1
aP(M,H)=L"P(n,1). (2) 5% (1+8)=f, @)

HereP is the probability that the configurationis realized  wherej(i) means all neighbors of lattice céllandf is the
at timet. The evolution operatdc’ will be specified below.  restriction numbetthe f-spin-facilitated kinetic Ising model,

Furthermore, let us introduce annihilation and creationthe FAM). Thus a flipS=—1=5=+1 is allowed only if
operators to formulate a state in terms of occupation numbehe number of neighboring cells in the low-mobility state
operators where in the present paper those operators have {ges not exceetl Note that this topological restriction guar-
eigenvalues 0 and 1. Thus the problem is to formulate th%ntees the h|gh|y Cooperative dynamics of the FAM, the in-
dynamics in such a way that this restriction is taken intofluence of which had been already demonstrated by numeri-
accoun24-332; for a recent review see RdB3]. The situ-  cal simulationd17,21. We should stress that the FAM is a
ation in mind can be analyzed in a seemingly compact formmodel on a mesoscopic scale that does not take into account
using master equatidid4,35,28 introduced abovgEq. (2)].  detailed atomic motion. The occupation numbers play a role
Following Refs.[34-36,28,3], the probability distribution  of block variables as the block spin in a scaling theory of
P(n,t) is related to a state vectdF(t)) in Fock space ac- phase transitions. So we conclude that the crossover from
cording toP(i,t) =(fi|F(t)), with the basis vectdn) com-  shear diffusion to shear waves also characteristic of super-
posed of second quantized operators. The master equati@ﬁollng cannot be expected within the Fredrickson-Andersen

(2) can be transformed to an equivalent equation in Focknodel. _ . .
space The evolution operator for a simple flip process ref&88

HFO)=L|F (). 3 Li=\(d] = did])+ y(d;—ddy), ®

The operatot.’ in Eq. (2) is mapped onto the operator Up where\ and y are flip rates. T_he operatods and diT fulfill
to now the procedure is independent of the operators use#le commutation rule of Pauli operators

Originally, the method had been applied for the Bose case s +

[34-36. Recently, an extension to restricted occupation [di,dj]-=g;(1—-2did)). 9
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The occupation number operatoj=d/d; is related to the termines only the energetic levels of the actual states, i.e., it

spin due to Eq(1). is responsible for the thermodynamic transition rates. Al-
Using Eq.(6), the average occupation number operatorthough we are aware that a real liquid cannot be mapped
obeys completely onto such an Ising-type Hamiltonian, the FAM is
well established and it seems to be a reasonable model to
ani) =NL—np)—¥(my). (100 describe supercooled liquids.

, ) The Hamiltonian(14) completes the mapping of a real
The confinement manifested by Eg) can be exactly taken |iquid onto an Ising model in comparison with the original

into account by assuming flip rates that depend on the con=an |n the case of a nonzero couplirga solid-solid in-
figuration of the local environment of a given cell; compare;qaction is favored whenever the relatidms 0 andh—Jz
Eq. (11). Here we consider thé-facilitated FAM with an  ~.( 4re fulfilled. This result follows by replacing the opera-

arb.itrary .numberf, which is the reasonable case in g by m=1—n. With the help of the algebraic properties
f-dimensional networks; see also REZ2]. of Pauli operators we get

To include the local restrictiong7) we replace A

—An; ---n; andy—yn; ---n; . Hence the evolution opera- exp(— BH/2)dexp BH/2)
tor reads
. =d?exp[ﬁ h+Jz—2, Ji|n|> . (15
L= 2 g [N = did]) + (i —dlld) Iny, -ony, 0
J1lt

(1)  wherel(i) means summation over all neighbors of gell

where)(ijl...jf is nonzero when the lattice indiceég - --j¢

belong to plaquettes of nearest neighbors. A flip process in
the celli is allowed whenever the neighboring cells are oc- Using Egs.(12) and(15) we are able, as befofeompare
cupied, i.e., such a flip process is favored in the case of &q.(10)], to derive an exact evolution equation for the aver-
liquidlike neighborhood. age particle number operatq. (6)]. A whole hierarchy of
Further analysis can be performed for an arbitrary numbeequations results. In the simplest approximation we decouple
f. In the case of a simple cubic lattice we detd= z/2, the equation within the mean-field approach. To be specific,
where d is the spatial dimension and is the number of we replace the Hamiltonia¢i3) by its mean-field expression
nearest neighbors.
Moreover, the method can be extended by including the

Ill. MEAN-FIELD APPROACH

mutual interaction between different cells and by considering Hmzzi hn;,
finite temperatures. To this aim we have to replace the evo-
lution operator by 38,39 with
L=v2 xij,j [(1—d)exp(— BH/2)dlexp( BH/2)] h=2h+23%S), (S)=1-2(n). (16)
+[(1—diT)exp(—,8H/2)diexp(BH/2)]njl---njf, The decoupling procedure is performed in the spirit of the

coarsening of the free energy such as in the conventional
(12) Ising model. Whereas the exact equation for the averaged
density is valid on a microscopic scale, say, of the size of

. . _ 71 . .
Heretv IS ?trr\]em;] hotpg"lﬁ ra:r?ie'_tl; HIS thlf 'Uvefze ter_rle— cells |, the equation resulting after decoupling and the sub-
perature of the heat bath, aktis the Hamilionian describ- sequent continuum limit should describe the system on a
ing the static interaction between different cells that gives

ice t local d ics diff ¢ f W scalex>1. However, the main feature of the model, the in-
gjfneotr?atnon ocal dynamics different from E@). We as- clusion of hard-core dynamics at the same lattice site mani-

fested in the anticommutation relations, is taken into ac-
1 count. As in the continuum Ising model, the correlations are
H=— hE S— —2 J;iSS; . (13 included in spatially varying terms, the influence of which is
i 210 discussed later. The evolution equation for the averaged den-
sity (n;(t)) can be obtained in the same manner as(EQ).
However, the corresponding equation is based on the modi-
fied evolution operatofl12), which gives rise to an additional
factor proportional to(n;(t))]". Furthermore, Eq(15) is
H =22 (h+Jz)ni—232 nin; (14) taken into account, leading to exponential terms.
' i Performing the continuum limit fotn;(t))=n(x,t) (for
1), we find

Using Eq.(1), the Hamiltonian can be rewrittefup to an
unimportant constahts

This Hamiltonian contains both the energetic level of eacf?'mpl'c'ty we setl =
cell and the mutual interaction between adjacent regions of ; ~ ~
different energy and mobility. It should be remarked thatthe ~ din=yn'[exp(—Bh/2)(1-n)—n expph/i2)n], (17)
original FAM corresponds to a Hamiltonian with=0 (h 5

plays the role of an activation enejgyrhe Hamiltonian de- whereh is defined in Eq(16). The steady state yields
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1 ( 7) B(2f—1)h
Ng=————. (18 In| —|=————— for Bh>1.
exp(Bh)+1 o 2
The relaxation time can be calculated by making an ansat2Symptotically two Arrhenius trajectories appear. However,
n(t) =ne+n,(t), which leads to the low-temperature branch offers a slowing down compared
to the high-temperature region manifested in a smaller slope.
oy () =7"ny(1), The crossover between both curves is roughly estimated to
be (ﬁh)cozz |n2
with The behavior of the relaxation time can be more pro-

nounced for the functiof (t) introduced in Ref[40]

dIn(rirg)|
dT '

1

T 2ynticosi Bhol2) — 2(T*IT) ngexp Bho/2)t F(T) ={
(19

_ As a result, we find for our model
wherehg=2[h+T*(1—2ng)] is introduced[see Eq.(16)]
mtlg.the characteristic temperatufé = Jz discussed in Sec. F(T)ZTM
Performing the stability analysis for the kinetic Ising . _ _
model without restrictions, we find that[Eq. (19)] can be As mentioned above, the high- and low-temperature regimes

2(f-1) |12

Y e — gh)

(23

put in the final form are different:
T
l:ﬂsnaf, F(T)Z\/Z/hw for Bh<1,
" (24)
with T
F(T)=+2h T for gh>1.
1
Tis (20

- 2[cosr(BT10/2) —2(T*T) noeXF(,BF\o/Z)] ' B. Influence of interaction

. o The inclusion of a mutual interaction between regions of
Here 7q stands for a microscopic time scale expressed by thgifferent mobility leads, in the mean-field approximation
inverse hopping rate and the coordination number. Equa- (15), to a temperature- and state-dependent activation energy

tion (20) has a simple interpretation. Due to the kinetic re'ﬁ=2(h+T*<S}), where(S) obeys the self-consistent equa-
strictions introduced before, the relaxation time of the FAM;ion

is given by the corresponding relaxation time of the conven-

tional kinetic Ising model scaled with a factng, the con- h TS
sequences of which will be discussed in the following. (S)=tan ?+ . (25)
A. Activation dynamics The characteristic temperatuf*=Jz does not signal a

As in the numerical simulatiosee Refs[17][21]), we second-order phase transition because the activation energy
discuss first a pure activation dynamics characterized by ndlas to be a nonzero parameter. o
glecting the static coupling between different cells. In our First, let us discuss the low-temperature lifiit-0. Here
notation we sef=0. Physically this means that a change ofWe find that(S)o=1—2exg—2(WkgT) —2(T*/T)]. The re-
the mobility (spin-flip proceskis possible with a probability laxation time tends to infinity folf —0, according to
proportional to exp€ Bh) according to Eq(15). The energy -
h is nothing but the difference between the liquidlike and the —:exp( (2d—1) ho
solidlike state per particle. 2kgT

T
The relaxation time is given by °
1-2 2h 2T*
ex 727
From here we conclude a different behavior for low and high o o _
temperatures: In the case of vanishing activation enerfgythe relaxation
time would greatly increase, approachiig, indicating a
second-order phase transition. Because the activation energy

|n(l> ~(f—1)n 2+ ’B_fh for ph<1, is always nonzero, the increase-ofs finite due to the finite
To 2 22 strength ofh. Furthermore, different from the conventional

with
|n(1) —gh+(f—D)in[1+exp )], (1)

To F10=2{h+T*

] . (26
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Ising model where the relaxation time decreases béléw Here the temperaturg, is the lowest temperature for which
the kinetic restriction prevents such a decay. The reason ihe system is cooled down. In particular, we consider the
the result revealed in Eq20), which relates the relaxation limit T,—0. Using the low-temperature limit for the relax-
time of the FAM to that of the usual Ising model. Due to the ation time(22) results in

factor n’ in the denominator of Eq(20), which becomes

smaller for low temperaturesng—0 for T—0), the relax- _ *
. . . i . . [ (2f=1)h 2T
ation time increases drastically, characterizing the partial R=x Y3 Ej
freezing of the mobility. 21" (2f=1)h
We remark that for a small activation enerfyh, and 113
T<T* there exist three solutions of the self-consistent equa- *
) - L e X —(2f-
tion (25) where the critical activation energy is given by exp[—(2f=Dh/T ]} ' 29
272 . o3 where Eik) is the exponential integral. In contrast to the
he= (T"=T)~. conventional LSW theory, the droplet radius remains finite.

*\3
3(T7%) Droplets of finite sizes appear and disappear. Nucleation is
strongly reduced, i.e., a sufficiently fast cooling procedure
prevents crystallization. Obviously the same kind of calcula-
tion can be performed with a nonconstant cooling rate. The

main result is unchanged.

It is easy to see that in the caselof 0 considered here, only
the solution with positive S, is relevant.

IV. NUCLEATION PROCESS

As a further consequence of the inclusion of the interac- V. SPATIAL FLUCTUATIONS
tion manifested in Eqc19) let us discuss the nucleation pro- Up to now we have neglected spatial fluctuations originat-
cess. When a glass former is cooled down the formation o{

: ; . ng from the static coupling strength Following the spirit
droplets of the solid phase is prevented. We would like 106 mean-field approach, we can include lowest-order gra-

demonstrate within our formalism that the nucleation radiu%ient terms by inserting Eq15) into Eq. (12) and using
of droplets remains finite at low temperatures. |

Due to the kinetic restrictions manifested in state-

dependent kinetic coefficienfsee Eq.(12)] and the inclu- E J'|n|=E Ji (n,—ny)+2zIn~J12v2n,+2Jn .
sion of the mutual interaction between particles situated at 7 " = f® '
nearest-neighbor sites, a change of the density is effectively (30)

allowed via diffusion. For instance, let us assume that ther%\
is a mobile particle within a certain region surrounded by T Z o
immobile ones. Such a particles can change its position onl§lensity fieldn(xt) in the form
by hopping processes, which corresponds, in our approach,

s a result we get an evolution equation for the average

to a diffusive motion. Therefore, the diffusive transport is Jn= ynf[exp(—Bﬁ/Z)(l—n)—n exp(Bﬁ/Z)n]
responsible only for a nucleation process. For that reason we

adopt the conventional Lifshitz-Slyozov-WagnékSW) +52J/TI?n exp(— Bh/2)(1—n)

theory[41] to describe the latest stage of the nucleation pro- -

cess, however, with the modification due to the time scaling +n exp(gh/2)n]V?n. (39

manifested in Eq(20). Because cooling is performed with a , } .

certain cooling rate, i.e., the temperature is time depender;li0 study Ehe influence OI spatial fluctuations we make the

via T(t), one obtains a diffusion coefficient that also depend$insatz n(x,t) =ng(t) + m(x,t), where ng(t) satisfies Eq.

strongly on time. Thus one has to replace the combindtion (17). Inserting this ansatz in E¢31) and linearizing the

with the diffusivity I by f},l“(t’)dt’. One can be convinced resulting equation with respect to(x,t) we find

that the final result of the LSW theory remains essentially

unchanged by this replacement. In particular, the average v v 200w

radius of a droplet is now given Hy?2] amex, ) =CHmex,H +DHVmx.b), (32

13 where the coefficient€(t) andD(t) [see Eq.33)] are de-
ﬁz(a,_ﬂftr(t,)dt,) @7 termined by the pure time-dependent densifft) obeying
9 Jo ' Eq. (17). Equation(32) is solved by

To estimate the behavior &f we take into account that the R R t
diffusion coefficient for a fixed spatial interval is propor- m(x,t):ml(x,t)exp< f A(t’)dt')-
tional to the inverse of a characteristic time that is chosen to 0

be the relaxation time given by E(R0). Furthermore, let us e m, obeys a diffusive equation, however, with a time-
assume a constant cooling rate Thus we get dependent diffusivitD (1)

f r(t')dt':f T(T)_lz—tTdTE—%thOT_l(T)dT. amy(X,t)=D(t)V2my(x,t),

(28)  with
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D(t)=y2J12/Tn{[(1—ne)exp —he/2T) + neexp(he/2T)], 2312
=y el (1—ne)exp( —he/2T) + neexp(he/2T) ] L2 expt — 22) = In(t/ty). (35
Fi=2[h+ T*(1—2ny)]. (33
Further progress can be reached by analyzing the asymptothh.y sically, this time—depgndent charaptgristic '9”9”‘ scale
behavior in the long-time limit. Moreover, we are interested's interpreted as the perimeter of solidlike regions that are
in the solidlike region wheren%l " f’or low tempera- self-organized by the underlying restrictions. The perimeter
ST is small in the initial time regime and increases on a loga-

tures. Therefore', Igt us expand the corregpondmg e.quatlo r%hmic scale in the long-time limit. Let us remark that we
for ng—0. In this limit we find for a cubic lattice withf

are not very deep inside the glass phase. In this case we

=d=272, would expect a more pronounced increase related to the very
ONe= —rng*l, strong decrease of mobility.
(34)
D(t)=d;ng—d,n®*2, VI. CONCLUSIONS
where the coefficients are given by The main motivation of our paper was to demonstrate the
influence of a constraint to the kinetic Ising model in the
=v[(1-2T"/T)exp(—a)+expal, sense of a facilitated kinetic Ising modéhe FAM). Al-
though the mean-field theory is a very crude approximation,
v2JI? it reveals some features of a glass transition such as no stable
d;= T exp(—a), static solution and a crossover between Arrhenius and non-
Arrhenius behavior. The model seems to be an alternative
2 way towards an analytical approach of the dynamics of co-
d,= v2) [(1—2T*/T)exp—a)—expal, operatively rearranging regions. Such a behavior seems to be
T relevant for liquids in the vicinity of a glass transition.
The mutual restrictions of moving particles leading to a
with freezing of the mobility are included explicitly in the model
. by a formulation of the collective stochastic dynamics in
a= h+T terms of Pauli operators. In doing so we were successful in
T solving the mean-field equation that is still a nonlinear evo-

lution equation. The approach is related to the conventional
To estimate the long-time behavior let us solve B34) and  one using the Landau theory of phase transitions. As a fur-
find the time-dependent diffusion coefficieDi(t). The re- ther step we want to include fluctuation effects to get a better
sulting diffusion equation with an arbitrary time-dependentunderstanding of the glass transition. Furthermore, we con-
diffusivity [Eq. (33)] can be solved analytically, leading to a sider the correlation function and should include defects that
characteristic dynamical length sc&lé= ['D(t’)dt’. Using yield different relaxation processes, as already demonstrated
Egs.(33) and(34), it results in the long-time limit numerically[21].
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